Abundances of low-mass BDs in Upper Scorpius A pilot study

Institut de Planétologie et d'Astrophysique de Grenoble/CNRS

Co-Is: T. Kopytova (MPIA), F. Allard (ENS-Lyon), P. Delorme (IPAG), N. Deacon (MPIA), E. Manjavacas (MPIA), G. Chauvin (IPAG), K. Öberg (Harvard), B. Biller (U. Edinburgh), E. Buenzli (MPIA), W. Brandner (MPIA), C. Mordasini (MPIA), I. Crossfield (U. Arizona), H. Klahr (MPIA), G.-D. Marleau (MPIA), J. Schlieder (MPIA), A.-M. Lagrange (IPAG), M. Janson (U. Belfast), T. Henning (MPIA)

The idea

Sample and setup

How to analyse the data?

The idea

Sample and setup

How to analyse the data?

Possible formation scenarios for low-mass brown-dwarfs

- Collapse/Fragmentation
- Disk fragmentation
- Premature Ejection
- Photo-erosion
- Core-accretion (up to 35 $M_{Jup} \Rightarrow C.$ Mordasini)

Wide distribution of compositions for low-mass BDs expected

How to measure the abundances from emission spectra?

- T_{eff}
- log g vs M/H degeneracy
- problem of cloud formation (depletion of chemical species)

Need for medium-resolution spectroscopy over the widest possible wavelength range

Idea: explore the relative abundances of a population of BDs with mass < 35 M_{Jup} in a cluster

- ⇒ Need bright enough objects for mid-res spectroscopy
- \Rightarrow No strong extinction
- ⇒ Different configurations (companions, free-floating)
- ⇒ Eliminate (as much as possible) unresolved binaries
- ⇒ Consider early-type/hot objects
 - ⇒ Less affected by dust
 - ⇒ No non-equilibrium chemistry

The choice of Upper Scorpius

3/ Perfect for Paranal RA=16h, DEC=-23.4

4/ Wide range of masses

Part of Sco-Cen (OB assoc) Down to spectral type L2 (0.01 M_☉)

Excess of low-mass BDs? (Lodieu et al. 2008, 2013 & ref. therein)

The choice of Upper Scorpius

5/ Dozens of low-mass BDs with diverse configurations

Isolated BDs with spectra indicative of low gravity

M=10-25 MJup

Binary low-mass BDs: USCO CTIO 108AB, USco1612-1800B

q_{B/A}=0.1-0.2 separation=430-670 AU M_B=14-26 M_{Jup}

Companions to stars:

q_{B/A}=0.005-0.03

Aller et al. 2013, ApJ, 773, 63

M_B=8-26 M_{Jup}

Lafrenière et al. 2013, ApJ, 689, 153 Béjar et al. 2008, ApJ, 673, 185

A program to try to answer these questions:

1/ Can we measure the atmospheric M/H, C/O, C/H ?

2/ What is the <u>distribution</u> of C/O and M/H for an homogeneous population of objects?

3/ How is it related to formation scenarios?

By-product: library of high-quality medium-res. NIR spectra of young M7-M9 dwarfs (SPHERE, GPI, etc)

The idea

Sample and setup

How to analyse the data?

European Organisation for Astronomical Research in the Southern Hemisphere

OBSERVING	PROGRAMMES	OFFICE •	Karl-Schwarzschild-Straße 2	• D-85748	Garching bei München	• e-mail: opo@eso.org	• Tel.:	+49 89	320 0647	73
					0	1 0				

APPLICATION FOR OBSERVING TIME

PERIOD: 9	93A
-----------	-----

Important Notice:

By submitting this proposal, the PI takes full responsibility for the content of the proposal, in particular with regard to the names of CoIs and the agreement to act according to the ESO policy and regulations, should observing time be granted.

1.	Title	Category:	C–7
	Chemical hints on the origins of low-mass brown-dwarfs in Upper Scorpius		

2. Abstract / Total Time Requested

Total Amount of Time: 0 nights VM, 29 hours SM

Upper Scorpius is the only star forming region where brown dwarfs (BDs) close to the typical deuterium-burning boundary have been discovered in a wide range of configurations (as wide binaries, companions to stars, or free floating). These configurations suggest that multiple BD formation mechanisms (disk instability/fragmentation, core-accretion ? + ejection, photo-erosion of pre-stellar cores, etc) are at play. We propose to use XSHOOTER to obtain high-quality medium-resolution (R~2700, 3800) $0.8 - 2.5 \ \mu$ m spectra of 10 late-type brown-dwarfs members of Upper Sco, found free-floating, in binaries, or orbiting stars. The spectra will be compared to dedicated grids of models in order to derive for the first time the metallicity and C/O ratio in these objects. The comparison of the abundances from object to object will help to understand whether they share a common formation pathway.

3. Run	Period	Instrument	Time	Month	Moon	Seeing	Sky	Mode	Туре
А	93	XSHOOTER	29h	any	n	1.0	CLR	s	

European Organisation for Astronomical Research in the Southern Hemisphere

OBSERVING PROGRAMMES OFFICE • Karl-Schwarzschild-Straße 2 • D-85748 Garching bei München • e-mail: opo@eso.org • Tel.: +49 89 320 06473

APPLICATION FOR OBSERVING TIME

PERIOD: 93A

Important Notice:

By submitting this proposal, the PI takes full responsibility for the content of the proposal, in particular with names of CoIs and the agreement to act according to the ECO

			Title
Status	Programme ID		the state mass brown-dwarfs in Upper Scorpius
~	093.C-0769	Chemical hints on	the origins of low-mass brown en
	Upper Scorpius boundary have b floating). These core-accretion ? to obtain high-o members of Up dedicated grids The comparison formation pathw	is the only star forming region who been discovered in a wide range of configurations suggest that multi + ejection, photo-erosion of pre- quality medium-resolution ($\mathbb{R}\sim27$ per Sco, found free-floating, in h of models in order to derive for of the abundances from object to way.	ere brown dwarfs (BDs) close to the typical deuterium-burning f configurations (as wide binaries, companions to stars, or free ple BD formation mechanisms (disk instability/fragmentation, stellar cores, etc) are at play. We propose to use XSHOOTER 00, 3800) $0.8 - 2.5 \mu m$ spectra of 10 late-type brown-dwarfs binaries, or orbiting stars. The spectra will be compared to the first time the metallicity and C/O ratio in these objects. object will help to understand whether they share a common

Source	Config	K _B	SpType	${ m M}_{ m A}~(M_{\odot})$	$M_{\rm B}~(M_{\rm Jup})$	$q_{b/A}$	ρ (AU)	Ref.
HIP 77900B	comp	14.04	M9	3.8	20^{+7}_{-3}	0.005	3200	Aller et al. 2013
HIP 78530B	comp	14.17	M8	2.5	22 ± 4	0.009	710	Latreniere et al. 2011
USco 161031.9-191305 B	comp	12.73	M9	0.88	20_{-3}^{++}	0.023	840	Aller et al. 2013
USCO CTIO 108 AB	bin	15.11	M9.5	0.06	14^{+2}_{-8}	0.23	670	Béjar et al. 2008
USco J161047.13-223949.4	iso	14.01	M8.5		~ 18			Lodieu et al. 2008
USco J160723.82-221102.0	iso	14.01	M8.5		~ 18			Lodieu et al. 2008
USco J160828.47-231510.4	iso	14.16	M9.5		$\sim \! 17$			Lodieu et al. 2008
USco J160818.43-223225.0	iso	14.70	M9.0		~ 14			Lodieu et al. 2008
USco J160606.29-233513.3	iso	14.97	M9.0		~ 13			Lodieu et al. 2008
USco J160737.99-224247.0	iso	15.33	M9.5		~11			Lodieu et al. 2008

Target properties: companion to star (comp), binaries (bin) or isolated (iso). We give the mass ratio $q_{b/A}$ of bount systems.

1/ Different configurations

2/ All spectral type M8.5-M9.5

CO overtone at 2.29 $\mu m \Rightarrow C/O$ ratio

Reduced errors in the analysis when abundances compared from one object to another

3/ No visual binaries (>50 mas)

4/WISE photometry \Rightarrow no IR excess

The instrument: X-Shooter @ VLT

a) 300-2500nm coverage in a single shot!b) R=5400 in the optical, 3890 in the NIR

Tricky data reduction

The idea

Sample and setup

How to analyse the data?

Atmospheric models:

a/ The sequential approach:

T_{eff} from SED

log g & M/H from the pseudo-continuum (optical+NIR)

C/O ratio from CO v=2→0 (K band, R=4000)

Atmospheric models: b/ Data-driven retrieval approach

Line et al. 2014, in press astro-ph: 1403.6412

Lee et al. 2013, ApJ, 778, 87

Links with formation models

Companions: disk model

K. Öberg (CfA/Harvard) and C. Mordasini (MPIA)

Fig. 2.— The predicted gas phase C/O ratio as a function of radius for five representative disks, ordered by spectral type, compared with the 'typical' disk model in Fig. 1. The derived temperature profile parameters, T_0 and q, are listed. The C/O ratios are calculated assuming that the stellar C/O ratio is solar, i.e. 0.54, and a static disk.

Öberg et al. 2011

Links with formation models

Planet population synthesis

(assuming Up. Sco IMF)

C. Mordasini (MPIA)

The idea

Sample and setup

How to analyse the data?

- 29hrs program on VLT to measure the relative abundances + M/H of low-mass BDs in Upper Sco
- 10 objects / various configurations ==> possible ≠ origins
- Pilot study: not 100% sure of the outcome(s)!
- Observations ongoing (4 objects observed already)
- People who want to contribute are welcomed!

