Luminosities and magnitudes of directly-detectable exoplanets

G.-D. Marleau¹ C. Mordasini¹ F. Allard² M. Bonnefoy³

¹ MPIA (Heidelberg) ² CRAL (Lyon, France) ³ IPAG (Grenoble, France)

Chauvin et al. (2004)

K Andromedae b

Bonnefoy et al. (2014)

Overview

Motivation

- Uncertainties in planet formation
- Direct detections

2 Coupling structures to atmospheres

- Calculating a planet structure
- Overview of atmosphere models
- Preliminary results

Overview

Motivation

- Uncertainties in planet formation
- Direct detections

2 Coupling structures to atmospheres

- Calculating a planet structure
- Overview of atmosphere models
- Preliminary results

Uncertainties in planet formation

Contents

Motivation

• Uncertainties in planet formation

Direct detections

2 Coupling structures to atmospheres

- Calculating a planet structure
- Overview of atmosphere models
- Preliminary results

Formation scenarios

Two formation scenarios for planets in discs:

- Core accretion: closer-in, less massive, higher [Fe/H], colder?
- Gravitational instability: > tens of AU, heavier, hotter?

Mordasini (2013)

Formation scenarios

Two formation scenarios for planets in discs:

- Core accretion: closer-in, less massive, higher [Fe/H], colder?
- Gravitational instability: > tens of AU, heavier, hotter?
- * Compare statistics of observations with model predictions

Mordasini (2013)

Population synthesis

Statistical study of a formation paradigm

- Choose parameters or draw from observations ($f_{D/G}$, τ_{disc} , Σ_0 , a_{pl})
- Run through physics: migration, planet build-up, disc evolution, etc.

Population synthesis

Statistical study of a formation paradigm

- Choose parameters or draw from observations ($f_{D/G}$, τ_{disc} , Σ_0 , a_{pl})
- Run through physics: migration, planet build-up, disc evolution, etc.

Core accretion: C. Mordasini

000000

Contents

- Uncertainties in planet formation
- Direct detections
- 2 Coupling structures to atmospheres
 - Calculating a planet structure
 - Overview of atmosphere models
 - Preliminary results

Direct imaging

- Direct detection: photometry/spectroscopy of object itself
- Bias towards young, massive, and hot planets
- Short term: dramatic increase (GPI, SPHERE)

Bonnefoy et al. (2014)

Bonnefoy et al. (2014)

Direct imaging

- Direct detection: photometry/spectroscopy of object itself
- Bias towards young, massive, and hot planets
- Short term: dramatic increase (GPI, SPHERE)
- \star Determine atmosphere of planet with proper tools

Bonnefoy et al. (2014)

Bonnefoy et al. (2014)

Direct imaging

- Direct detection: photometry/spectroscopy of object itself
- Bias towards young, massive, and hot planets
- Short term: dramatic increase (GPI, SPHERE)
- $\star\,$ Determine atmosphere of planet with proper tools

Have $F(\nu)$ but want (i) mass M_{ρ} and (ii) initial luminosity $L_i \Rightarrow$ need:

• Realistic atmospheres $\rightarrow \log g = \log GM_p/R_p^2$, T_{eff}

Direct imaging

- Direct detection: photometry/spectroscopy of object itself
- Bias towards young, massive, and hot planets
- Short term: dramatic increase (GPI, SPHERE)
- \star Determine atmosphere of planet with proper tools

Have $F(\nu)$ but want (i) mass M_p and (ii) initial luminosity $L_i \Rightarrow$ need:

- Realistic atmospheres $\rightarrow \log g = \log GM_p/R_p^2$, T_{eff}
 - ! Since

$$\frac{{T_{\rm eff}}^4}{g} =$$

Direct imaging

- Direct detection: photometry/spectroscopy of object itself
- Bias towards young, massive, and hot planets
- Short term: dramatic increase (GPI, SPHERE)
- \star Determine atmosphere of planet with proper tools

Have $F(\nu)$ but want (i) mass M_p and (ii) initial luminosity $L_i \Rightarrow$ need:

- Realistic atmospheres $\rightarrow \log g = \log GM_p/R_p^2$, T_{eff}
 - ! Since

$$4\pi\sigma_{\rm SB}G\,\frac{T_{\rm eff}^{4}}{g} =$$

Direct imaging

- Direct detection: photometry/spectroscopy of object itself
- Bias towards young, massive, and hot planets
- Short term: dramatic increase (GPI, SPHERE)
- \star Determine atmosphere of planet with proper tools

Have $F(\nu)$ but want (i) mass M_{ρ} and (ii) initial luminosity $L_i \Rightarrow$ need:

- Realistic atmospheres $\rightarrow \log g = \log GM_p/R_p^2$, T_{eff}
 - ! Since

$$4\pi\sigma_{\rm SB}G\,\frac{T_{\rm eff}^4}{g} = \frac{4\pi R_p^2\,\sigma_{\rm SB}\,T_{\rm eff}^4}{M_p} = \frac{L_{\rm (bol)}}{M_p},$$

Direct imaging

- Direct detection: photometry/spectroscopy of object itself
- Bias towards young, massive, and hot planets
- Short term: dramatic increase (GPI, SPHERE)
- \star Determine atmosphere of planet with proper tools

Have $F(\nu)$ but want (i) mass M_p and (ii) initial luminosity $L_i \Rightarrow$ need:

- Realistic atmospheres $\rightarrow \log g = \log GM_p/R_p^2$, T_{eff}
 - ! Since

$$4\pi\sigma_{\rm SB}G\,\frac{T_{\rm eff}^{\ 4}}{g}=\frac{4\pi R_p^{\ 2}\,\sigma_{\rm SB}\,T_{\rm eff}^{\ 4}}{M_p}=\frac{L_{\rm (bol)}}{M_p},$$

need age to find M_p-L_i joint constraints, using $L(M, L_i, t)$

Direct imaging

- Direct detection: photometry/spectroscopy of object itself
- Bias towards young, massive, and hot planets
- Short term: dramatic increase (GPI, SPHERE)
- \star Determine atmosphere of planet with proper tools

Have $F(\nu)$ but want (i) mass M_p and (ii) initial luminosity $L_i \Rightarrow$ need:

- Realistic atmospheres $\rightarrow \log g = \log GM_p/R_p^2$, $T_{\rm eff}$
 - ! Since

$$4\pi\sigma_{\rm SB}G\,\frac{T_{\rm eff}^4}{g}=\frac{4\pi R_p^2\,\sigma_{\rm SB}\,T_{\rm eff}^4}{M_p}=\frac{L_{\rm (bol)}}{M_p},$$

need age to find $M_p - L_i$ joint constraints, using $L(M, L_i, t)$

2 Need cooling curves with arbitrary L_i

Direct imaging

- Direct detection: photometry/spectroscopy of object itself
- Bias towards young, massive, and hot planets
- Short term: dramatic increase (GPI, SPHERE)
- \star Determine atmosphere of planet with proper tools

Have $F(\nu)$ but want (i) mass M_p and (ii) initial luminosity $L_i \Rightarrow$ need:

- Realistic atmospheres $\rightarrow \log g = \log GM_p/R_p^2$, $T_{\rm eff}$
 - ! Since

$$4\pi\sigma_{\rm SB}G\,\frac{T_{\rm eff}^4}{g}=\frac{4\pi R_p^2\,\sigma_{\rm SB}\,T_{\rm eff}^4}{M_p}=\frac{L_{\rm (bol)}}{M_p},$$

need age to find M_p-L_i joint constraints, using $L(M, L_i, t)$

- **2** Need cooling curves with arbitrary L_i
 - \star "Real" atmospheres \Rightarrow correct (i) cooling and (ii) interpretation

Coupling atmospheres to planet interiors

• Old idea (e.g. Baraffe et al. 1997, Marley et al. 2007, Paxton et al. 2011)...

- Old idea (e.g. Baraffe et al. 1997, Marley et al. 2007, Paxton et al. 2011)...
- ... but "no models as good as ours" will be $\ddot{\neg}$:

- Old idea (e.g. Baraffe et al. 1997, Marley et al. 2007, Paxton et al. 2011)...
- ... but "no models as good as ours" will be ∵:
 - State-of-the-art atmospheres (BT-Settl)
 - Arbitrary starting conditions for the cooling curves
 - Covering of deuterium-burning objects (brown dwarfs)

- Old idea (e.g. Baraffe et al. 1997, Marley et al. 2007, Paxton et al. 2011)...
- ... but "no models as good as ours" will be ∵:
 - State-of-the-art atmospheres (BT-Settl)
 - Arbitrary starting conditions for the cooling curves
 - Covering of deuterium-burning objects (brown dwarfs)
 - * Bonus: Coupling to formation code (population synthesis)

- Old idea (e.g. Baraffe et al. 1997, Marley et al. 2007, Paxton et al. 2011)...
- ... but "no models as good as ours" will be ∵:
 - State-of-the-art atmospheres (BT-Settl)
 - Arbitrary starting conditions for the cooling curves
 - Covering of deuterium-burning objects (brown dwarfs)
 - * Bonus: Coupling to formation code (population synthesis)

How to couple

Use atmospheres to obtain boundary conditions for inner structure

Overview

Motivation

- Uncertainties in planet formation
- Direct detections

2 Coupling structures to atmospheres

- Calculating a planet structure
- Overview of atmosphere models
- Preliminary results

Contents

Motivation

- Uncertainties in planet formation
- Direct detections

2 Coupling structures to atmospheres

• Calculating a planet structure

- Overview of atmosphere models
- Preliminary results

Structure of gas giant planets

Structure of gas giants, from the centre:

- Solid core/Dissolved metals
- Onvective interior
- 8 Radiative atmosphere

Structure of gas giant planets

Structure of gas giants, from the centre:

- **(**) Solid core/Dissolved metals \rightarrow negligible; has some heat capacity
- **②** Convective interior $\rightarrow \approx M_{tot}$, R_{tot} ; heat reservoir
- § Radiative atmosphere \rightarrow negligible; "insulation" of interior

Structure of gas giant planets

Structure of gas giants, from the centre:

- **(**) Solid core/Dissolved metals \rightarrow negligible; has some heat capacity
- **②** Convective interior $\rightarrow \approx M_{tot}$, R_{tot} ; heat reservoir

 $\textcircled{\sc 0}$ Radiative atmosphere \rightarrow negligible; "insulation" of interior Calculating structure:

- Mass conservation: dm/dr
- Hydrostatic equilibrium: dP/dr
- Convection/Radiation diffusion: dT/dr

Structure of gas giant planets

Structure of gas giants, from the centre:

- **(**) Solid core/Dissolved metals \rightarrow negligible; has some heat capacity
- **②** Convective interior $\rightarrow \approx M_{tot}$, R_{tot} ; heat reservoir

 $\textcircled{\sc 0}$ Radiative atmosphere \rightarrow negligible; "insulation" of interior Calculating structure:

- Mass conservation: dm/dr
- Hydrostatic equilibrium: dP/dr
- Convection/Radiation diffusion: dT/dr
- \star Need boundary condition for P, T

Simplest b.c.:
$$P = \frac{2}{3}g/\kappa$$
 at $T = T_{\text{eff}}$ (Eddington)

Structure of gas giant planets

Structure of gas giants, from the centre:

- **②** Convective interior $\rightarrow \approx M_{tot}$, R_{tot} ; heat reservoir

 $\textcircled{\sc 0}$ Radiative atmosphere \rightarrow negligible; "insulation" of interior Calculating structure:

- Mass conservation: dm/dr
- Hydrostatic equilibrium: dP/dr
- Convection/Radiation diffusion: dT/dr
- \star Need boundary condition for P, T

Simplest b.c.: $P = \frac{2}{3}g/\kappa$ at $T = T_{\text{eff}}$ (Eddington)

Connect just below atmosphere at R_{couple}

- Neglect ΔM , ΔR above R_{couple}
- Interpolate ($P_{\text{couple}}, T_{\text{couple}}$) in log g, T_{eff}

Overview of atmosphere models

Contents

Motivation

- Uncertainties in planet formation
- Direct detections

2 Coupling structures to atmospheres

- Calculating a planet structure
- Overview of atmosphere models
- Preliminary results

BT-Settl atmospheres

- Spherical symmetry (1D)
- Radiative transfer solver
- Convection: MLT
- Clouds, mixing, diseq. chemistry

Freytag et al. (2010)

Overview of atmosphere models

BT-Settl atmospheres

- Spherical symmetry (1D)
- Radiative transfer solver
- ... with huge line lists
- Convection: MLT
- ... with α_{MLT} from sim.
- Clouds, mixing, diseq. chemistry
- \rightarrow "See" F. Allard's talk

Freytag et al. (2010)

Overview of atmosphere models

BT-Settl atmospheres

- Spherical symmetry (1D)
- Radiative transfer solver
- ... with huge line lists
- Convection: MLT
- . . . with α_{MLT} from sim.
- Clouds, mixing, diseq. chemistry
- \rightarrow "See" F. Allard's talk

For coupling purposes

Atmosphere = Entropy(log g, T_{eff})

Contents

Motivation

- Uncertainties in planet formation
- Direct detections

2 Coupling structures to atmospheres

- Calculating a planet structure
- Overview of atmosphere models
- Preliminary results

Motivation

Coupling structures to atmospheres 00000000

Summary and outlook

Preliminary results

Example

• $M_p = 10 M_J$, warm start

M		ti	

Coupling structures to atmospheres

Preliminary results

Example

- $M_p = 10 M_J$, warm start
- (Small) differences in cooling rate and magnitudes
- To do: check interpolation, use BT-Settl 2013 grid

Preliminary results

Population synthesis results (slide: C. Mordasini)

Luminosities and magnitudes of directly-detectable exoplanets

Motivation

Preliminary results

- "Post-processing" of magnitudes
- Results of full coupling to come

Preliminary results

- "Post-processing" of magnitudes
- Results of full coupling to come

Motivation

Coupling structures to atmospheres

Summary and outlook

Preliminary results

- "Post-processing" of magnitudes
- Results of full coupling to come

Motivation

Coupling structures to atmospheres

Summary and outlook

Preliminary results

- "Post-processing" of magnitudes
- Results of full coupling to come

Overview

Motivation

- Uncertainties in planet formation
- Direct detections
- 2 Coupling structures to atmospheres
 - Calculating a planet structure
 - Overview of atmosphere models
 - Preliminary results

Summary and outlook

- Direct imaging data in position to constrain planet formation theory
- Need to accurately compute cooling of gas giant planets...
- ... and map their spectra to mass-initial luminosity constraints

More accurate cooling planet curves

The secret is to use state-of-the-art atmospheres as boundary conditions for planet structure calculations

Summary and outlook

- Direct imaging data in position to constrain planet formation theory
- Need to accurately compute cooling of gas giant planets...
- ... and map their spectra to mass-initial luminosity constraints

More accurate cooling planet curves

The secret is to use state-of-the-art atmospheres as boundary conditions for planet structure calculations

 \Rightarrow Statistical comparisons of population synthesis with magnitudes

Summary and outlook

\star Thank you for your attention! \star

- Direct imaging data in position to constrain planet formation theory
- Need to accurately compute cooling of gas giant planets...
- ... and map their spectra to mass-initial luminosity constraints

More accurate cooling planet curves

The secret is to use state-of-the-art atmospheres as boundary conditions for planet structure calculations

 \Rightarrow Statistical comparisons of population synthesis with magnitudes

Additional material

Information on the initial entropy

Additional material

Information on the initial entropy

Joint constraints on M and S_i : from L_{bol}

Motivation 000	Inferring M and S_j from L and age $\bullet 000$	
Applications		
HR 8799 b		

Marois et al., Zuckerman (2010)

- Hot-start masses
- Multiple system \rightarrow dynamical info
- \rightarrow Lower bound on S_i
- CA "too cold" by $\Delta S=0.5$ but ok

Constraining the initial entropy of directly-detected exoplanets

Joint constraints on M and S_i : from magnitudes

Bonnefoy et al. (2013)

- Atmospheric models: uncertain
- * Luminosities more robust