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Uncertainties in planet formation

Formation scenarios

Two formation scenarios for planets in discs:

Core accretion: closer-in, less massive, higher [Fe/H], colder?

Gravitational instability: > tens of AU, heavier, hotter?

? Compare statistics of observations with model predictions

W. Benz

Mordasini (2013)
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Uncertainties in planet formation

Population synthesis

Statistical study of a formation paradigm

Choose parameters or draw from observations (fD/G, τdisc, Σ0, apl)
Run through physics: migration, planet build-up, disc evolution, etc.

Core accretion: C. Mordasini
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Direct detections

Direct imaging

Direct detection: photometry/spectroscopy of object itself

Bias towards young, massive, and hot planets

Short term: dramatic increase (GPI, SPHERE)

? Determine atmosphere of planet with proper tools

Bonnefoy et al. (2014)
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Direct detections

Direct imaging

Direct detection: photometry/spectroscopy of object itself

Bias towards young, massive, and hot planets

Short term: dramatic increase (GPI, SPHERE)

? Determine atmosphere of planet with proper tools

Have F (ν) but want (i) mass Mp and (ii) initial luminosity Li ⇒ need:

1 Realistic atmospheres → log g = logGMp/Rp
2,Teff

! Since

4πσSBG

Teff
4

g
=

4πRp
2 σSBTeff

4

Mp
=

L(bol)

Mp
,

need age to find Mp–Li joint constraints, using L(M,Li , t)

2 Need cooling curves with arbitrary Li

? “Real” atmospheres ⇒ correct (i) cooling and (ii) interpretation
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Direct detections

Coupling atmospheres to planet interiors

Old idea (e.g. Baraffe et al. 1997, Marley et al. 2007, Paxton et al. 2011). . .

. . . but “no models as good as ours” will be ¨̂ :

State-of-the-art atmospheres (BT-Settl)
Arbitrary starting conditions for the cooling curves
Covering of deuterium-burning objects (brown dwarfs)

? Bonus: Coupling to formation code (population synthesis)

How to couple

Use atmospheres to obtain boundary conditions for inner structure
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Calculating a planet structure

Structure of gas giant planets

Structure of gas giants, from the centre:

1 Solid core/Dissolved metals

→ negligible; has some heat capacity

2 Convective interior

→ ≈ Mtot,Rtot; heat reservoir

3 Radiative atmosphere

→ negligible; “ insulation” of interior
Calculating structure:

Mass conservation: dm/dr

Hydrostatic equilibrium: dP/dr

Convection/Radiation diffusion: dT/dr

? Need boundary condition for P, T
Simplest b.c.: P = 2

3g/κ at T = Teff (Eddington)

Connect just below atmosphere at Rcouple

Neglect ∆M,∆R above Rcouple

Interpolate (Pcouple,Tcouple) in
log g,Teff
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Overview of atmosphere models

BT-Settl atmospheres

Spherical symmetry (1D)

Radiative transfer solver

. . . with huge line lists

Convection: MLT

. . . with αMLT from sim.

Clouds, mixing, diseq. chemistry

→ “See” F. Allard’s talk

For coupling purposes

Atmosphere = Entropy(log g,Teff)

Freytag et al. (2010)
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Preliminary results
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Preliminary results

Example

Mp = 10 MJ , warm start

(Small) differences in cooling rate and magnitudes
To do: check interpolation, use BT-Settl 2013 grid
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Preliminary results

Population synthesis results (slide: C. Mordasini)

a-L diagram
Formation phase: total L5e6 yrs

2e7 yrs 1e8 yrs 1e9 yrs

Evolution phase: early on, still imprint from formation. Coupling important!

the most luminous ones are 
those still accreting.

can also make similar plots for 
each obs. band.

CD745
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Preliminary results

Population synthesis results: magnitudes

“Post-processing” of magnitudes

Results of full coupling to come
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Overview

1 Motivation
Uncertainties in planet formation
Direct detections

2 Coupling structures to atmospheres
Calculating a planet structure
Overview of atmosphere models
Preliminary results

3 Summary and outlook
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? Thank you for your attention! ?

Direct imaging data in position to constrain planet formation theory

Need to accurately compute cooling of gas giant planets. . .

. . . and map their spectra to mass–initial luminosity constraints

More accurate cooling planet curves

The secret is to use state-of-the-art atmospheres
as boundary conditions for planet structure calculations

⇒ Statistical comparisons of population synthesis with magnitudes
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Information on the initial entropy

Joint constraints on M and Si : from Lbol
Motivation Inferring M and Si from L and age Predicting realistic magnitudes Conclusion

Applications

HR 8799 b

Marois et al., Zuckerman (2010)

Hot-start masses

Multiple system → dynamical info

→ Lower bound on Si

CA “too cold” by ∆S = 0.5 but ok
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Information on the initial entropy

Joint constraints on M and Si : from magnitudes

Bonnefoy et al. (2013)

Atmospheric models: uncertain

? Luminosities more robust
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