

Abundances in the solar system: what we achieved and how much was it dependent on space probes?

Sandrine VINATIER LESIA, Observatoire de Paris-Meudon

Introduction: a typical planet radiation

1

Introduction: thermal IR emission

Outgoing thermal emission of a planet

Pb: How to decouple temperature and composition contributions?

- Temperature:
 - fit of the observed I_v
 - a gas uniformely mixed with known abundance
- Abundance:
 - fit of the observed $I_v > \tau \Rightarrow q$
 - -T is known

Introduction: radiative transfer

Absorption line

Width of the line depends on the gas density: the higher is the abundance, the larger is the line \Leftrightarrow pressure broadening

Absorption/emission depends on the temperature gradient in the region of the radiation emission (where $\tau = 1$).

Introduction: line opacity and level probed

How to probe several levels?

For a given molecule, lines of different intensities originate from different levels

Line 1 has a small absorption coefficient => probe deeper in the atmosphere. Line 2 has a high absorption coefficient => probe higher in the atmosphere.

Introduction: line opacity and level probed

How to probe several levels?

For a given molecule, lines of different intensities originate from different levels

Line 1 has a small absorption coefficient => probe deeper in the atmosphere. Line 2 has a high absorption coefficient => probe higher in the atmosphere.

Introduction: line profile vs thermal profile

Region of positive thermal gradient => emission line Region of negative thermal gradient => absorption line If isothermal profile => no line

Introduction: line profile vs thermal profile

Titan

Titan's composition: an historical overview

1925: Jeans studied the atmospheric escape process => Titan should have kept an atmosphere.

 \rightarrow gas of molecular weight \geq 16 : possibly Ar, Ne, N₂, CH₄, NH₃ from thermodynamical theory

 \rightarrow no H₂ and He because they are too light and should have escaped

Titan's composition: an historical overview

1925: Jeans studied the atmospheric escape process => Titan should have kept an atmosphere.

 \rightarrow gas of molecular weight \geq 16 : possibly Ar, Ne, N₂, CH₄, NH₃ from thermodynamical theory

 \rightarrow no H₂ and He because they are too light and should have escaped

1944 : first detection of CH₄ (Kuiper, 1944)

1961 – 1973 : UV ground-based observations (McCord et al. 1971) and space observations with the Orbiting Astronomical Observatory (Caldwell et al., 1973)

1961 – 1973 : UV ground-based observations (McCord et al. 1971) and space observations with the Orbiting Astronomical Observatory (Caldwell et al., 1973)

Very similar spectra for Titan and Saturn except in UV => 2 different models for Titan
- low density atmosphere => Rayleigh scattering is not efficient.
- Rayleigh scattering exists but is masked by an UV absorber = haze.

If an UV absorber exists = > deposition of energy at high altitude => T \nearrow with height

Possible detection of H₂: unexpected from Jean's escape calculations

In 1972 : Titan's atmosphere composition : CH₄, H₂, aerosols + ???

Possible detection of H₂: unexpected from Jean's escape calculations

In 1972 : Titan's atmosphere composition : CH₄, H₂, aerosols + ???

Rmq: In 1981, Trafton et al. mentioned that their 1972 and 1975 $\rm H_2$ observations were mostly due to $\rm CH_{4.}$

Titan's photometry: thermal emission (12 - 20 µm)

Jupiter satellites (no atmosphere) temperatures : close to BB emission (Gillet et al., 1970).

Titan : farther from the Sun, $A_b = 0.29$ => Titan's equilibrium temperature should be 82 K.

Titan's photometry: thermal emission (12 - 20 µm)

Jupiter satellites (no atmosphere) temperatures : close to BB emission (Gillet et al., 1970).

Titan : farther from the Sun, A_b= 0.29 => Titan's equilibrium temperature should be 82 K.

Titan at 12 µm (Allen et al., 1971) : used O'Brien Observatory (76 cm) \rightarrow T_b = 125 ± 5 K (hyp: R_{Titan} = 2405 km) => Greenhouse effect in a thin atmosphere

Titan's photometry: thermal emission (12 - 20 µm)

Jupiter satellites (no atmosphere) temperatures : close to BB emission (Gillet et al., 1970).

Titan : farther from the Sun, A_b= 0.29 => Titan's equilibrium temperature should be 82 K.

Titan at 12 µm (Allen et al., 1971) : used O'Brien Observatory (76 cm) \rightarrow T_b = 125 ± 5 K (hyp: R_{Titan} = 2405 km) => Greenhouse effect in a thin atmosphere

Titan at 20 µm (Morrison et al., 1972) : Mauna Kea observatory (2.24 m). interesting because = peak of the BB emission \rightarrow T_b = 93 K, puzzling! (R_{Titan} = 2550 km)

2 possibilities : - surface emissivity is very low

- opacity of the atmosphere very high at 20 μ m \rightarrow possibly H₂ (collision induced), then the surface pressure should be ~1 atm

Titan's spectroscopy: thermal emission (8 - 13 µm)

Gillet et al., (1973) : observations at Mount Lemmon (152 cm)

Titan's spectroscopy: thermal emission (8 - 13 µm)

Gillet et al., (1973) : observations at Mount Lemmon (152 cm), assumed : R_{Titan} = 2440 km.

2 possible interpretations : - If T \searrow with height => strong absorber around 10 µm : NH₃ (10.5 µm) ?

- If T \nearrow with height => strong emission features in the 8 µm and 12.5 µm regions : CH₄ (7.7 µm), C₂H₆ (12.2 µm)

Need of a better spectral resolution

Titan's atmosphere: the first models

- Greenhouse effect in a massive atmosphere (Pollack, 1973)
- Strong atmospheric inversion in a much less massive atmosphere (Danielson et al., 1973)
- Greenhouse effect + inversion (Low and Rieke, 1974)

- Photochemical models (Strobel, 1974)

Titan: confirmation of a temperature inversion

Thermal emission of the UV-absorbing aerosols explain the observations at 10 and 20 μ m.

Titan's thermal emission (8-13 µm): a better resolution

Gillett et al, 1975: observations at Kitt Peak (2.1 m and 4 m), assumed : R_{Titan} = 2900 km.

They fitted the data with a model including a temperature inversion at 160 K (stratosphere) - $q_{C2H6} = 0.5$ atm-cm

- $q_{C2H2} = 1.0 atm-cm$
- optically thin dust

Titan's thermal emission (8-13 µm): a better resolution

Gillett et al, 1975: observations at Kitt Peak (2.1 m and 4 m), assumed : R_{Titan} = 2900 km.

They fitted the data with a model including a temperature inversion at 160 K (stratosphere) - $q_{C2H6} = 0.5$ atm-cm

- q_{C2H2} = 1.0 atm-cm
- optically thin dust

They derived :

- $q_{C2H4} = 0.002$ atm-cm (in agreement with photochemical model)

- $q_{CH3D} \sim 0.5$ atm-cm

Titan's thermal emission (8-13 µm): a better resolution

Titan's thermal profiles: models

- atmosphere of CH_4 in equilibrium with a solid CH_4 surface with T_{surf} = 86 K and

 $P_{surf} = 20 \text{ mbar} (Calwell, 1978).$

- atmosphere of N₂ (CH₄ = minor constituent) with T_{surf} = 200 K and P_{surf} = 20 bars (Hunten, 1978) = greenhouse model due to pressure-induced absorption in N₂.

Atmosphere of N₂, m=28

Titan's thermal profiles: models

- atmosphere of CH_4 in equilibrium with a solid CH_4 surface with $T_{surf} = 86$ K and

 $P_{surf} = 20 \text{ mbar} (Calwell, 1978).$

- atmosphere of N₂ (CH₄ = minor constituent) with T_{surf} = 200 K and P_{surf} = 20 bars (Hunten, 1978) = greenhouse model due to pressure-induced absorption in N₂.

Consensus: T inversion with ~160 K (from the thermal emission of CH_4 at 7.7 μ m)

Titan in far IR (0.3-6 cm): surface temperature

Radio wavelength -> no gas absorption in this spectral region, except NH₃, but was not detected in Titan's atmosphere => should probe the surface temperature

- Jaffe et al., 1980 : observation with the VLA (interferometer) at 1.3, 2 and 6 cm. -> derived $T_{h} = 87 \pm 9 \text{ K}$

Knowledge on Titan's atmosphere before space probes

- Molecular gas detected : CH₄, C₂H₆, C₂H₂, CH₃D, C₂H₄ and maybe H₂
 -> poor constrains of their column densities.
- Aerosols absorbing in UV => heating of the stratosphere = temperature inversion.
- Thermal emission of CH_4 at 7.7 μ m => stratosphere temperature = 160 K.
- Cold surface temperature < 100 K.

Uncertainty on the main composition:

- atmosphere of CH₄
- atmosphere of N_2 (CH₄ = minor constituent)

Some photochemical models => based on $CH_4 + H_2$ photochemistry

Thermal profile

Inferred from radio occultation measurements (Lindal et al., 1983)

- Radio occultation measurements => T/m profile

- Mid-IR spectrometry at 540 cm⁻¹ => T_{surf} = 94-97 K

m ~ 28 amu => atmosphere

of N₂ or CO

m ~ 28 amu => atmosphere

of N₂ or CO

Thermal profile

Inferred from radio occultation measurements (Lindal et al., 1983)

- Radio occultation measurements => T/m profile

- Mid-IR spectrometry at 540 cm⁻¹ => T_{surf} = 94-97 K

The predicted surface and tropopause temperature were close to the Voyager observations. The tropopause was thought to be 150 km higher than observed. Stratospheric temperature were correct.

Composition

UVS solar occultations and airglow measurements: emission lines of N and N₂
 => N₂ is the major component (82-95 %)
 => CH₄ is a minor constituent (6% varying with altitude)

Composition

UVS solar occultations and airglow measurements: emission lines of N and N₂
 => N₂ is the major component (82-95 %)
 => CH₄ is a minor constituent (6% varying with altitude)

Composition

As the thermal profile was known => constrains of the molecular abundances with radiative transfer models.

But nadir observations => no vertical resolution

1995 : first General Circulation Model of Titan's atmosphere => explanation of the spatial distribution of molecules

- Observation in near IR
- 1983: CO detection at 4.5 μ m, q_{co} = 6 x 10⁻⁵ (Lutz et al 1983)

Observation in near IR

- 1983: CO detection at 4.5 μ m, q_{co} = 6 x 10⁻⁵ (Lutz et al 1983)
- Observations in mm/submm : very high resolution
- Detection of CH₃CN
- Vertical profiles of nitriles outside the Voyager range (from the line profile)
- ¹⁵N/¹⁴N in HCN, ¹⁸O/¹⁶O in CO
- Wind speed from the Doppler shifts of the lines .

10⁻¹³ 10⁻¹² 10⁻¹¹ 10⁻¹⁰ 10⁻⁹ 10⁻⁸ 10⁻⁷ 10⁻⁶ 10⁻⁵ MIXING RATIO

Observation in near IR

- 1983: CO detection at 4.5 μ m, q_{co} = 6 x 10⁻⁵ (Lutz et al 1983)

Observations in mm/submm : very high resolution

- Detection of CH₃CN
- Vertical profiles of nitriles outside the Voyager range (from the line profile)
- ¹⁵N/¹⁴N in HCN, ¹⁸O/¹⁶O in CO
- Wind speed from the Doppler shifts of the lines

Observations in infrared

- High resolution ground based observations:
- -> thermal profile from CH_4 lines at 7.7 μ m in the 300-600 km range (higher than Voyager)

-> wind velocity from Doppler shift from C_2H_6 lines at 12 μ m

Observation in near IR

- 1983: CO detection at 4.5 μ m, q_{co} = 6 x 10⁻⁵ (Lutz et al 1983)

Observations in mm/submm : very high resolution

- Detection of CH₃CN
- Vertical profiles of nitriles outside the Voyager range (from the line profile)
- ¹⁵N/¹⁴N in HCN, ¹⁸O/¹⁶O in CO
- Wind speed from the Doppler shifts of the lines

Observations in infrared

- High resolution ground based observations:
- -> thermal profile from CH_4 lines at 7.7 μ m in the 300-600 km range (higher than Voyager)
- -> wind velocity from Doppler shift from C_2H_6 lines at 12 μm

Space observations (ISO) detection of H₂O and C₆H₆ (Coustenis et al., 1998, 2003).

Titan's composition: before and after space probes

	Before Voyager	Voyager	Ground/satellites	Cassini
$\begin{array}{c} {\rm CH}_4 \\ {\rm H}_2 \\ {\rm C}_2 {\rm H}_2 \\ {\rm C}_2 {\rm H}_6 \\ {\rm C}_2 {\rm H}_4 \\ {\rm C}_3 {\rm H}_8 \\ {\rm CH}_3 {\rm C}_2 {\rm H} \\ {\rm HCN} \\ {\rm HCN} \\ {\rm HC}_3 {\rm N} \\ {\rm CH}_3 {\rm CN} \\ {\rm CO}_2 \\ {\rm CO} \\ {\rm H}_2 {\rm O} \\ {\rm C}_6 {\rm H}_6 \end{array}$	1 - 2 km. Am < 2 km.Am 1 cm. Am 0.5 cm. Am 2. 10 ⁻³ cm.Am	 the main com ⇒ impossible to the level protocolumn density 	ponent was unknown to infer abundances oed for each molecule is u y ratio ≠ abundances ratio	nknown:

Before Voyager : only column densities inferred for CH_4 , H_2 , C_2H_2 , C_2H_6 and C_2H_4 . Coupling between T and composition -> importance of the thermal profile observed with Voyager

Titan's composition: before and after space probes

	"Before" Voyager (a)	Voyager	Ground/satellites	Cassini
CH_4	1.3-2.6 %	6% (alt. var.)		4.9% surf, 1.48% atm.
H_2	< 2.6 %	0.2 %		0.1 %
$\overline{C_2H_2}$	1 x 10 ⁻⁵	2.2 x 10 ⁻⁶	5.5 x 10 ⁻⁶ (ISO)	2.0 x 10 ⁻⁶
$\overline{C_2H_6}$	2 x 10 ⁻⁶	1.3 x 10 ⁻⁵	2.0 x 10 ⁻⁵ (ISO)	1.0 x 10 ⁻⁵
C_2H_4	3 x 10 ⁻¹⁰	9 ± 5 x 10 ⁻⁸	1.2 x 10 ⁻⁷ (ISO)	1.0 x 10 ⁻⁷ (alt. var.)
C_3H_8				
CH ₃ C ₂ I	Н			
HCN				
HC ₃ N				
CH ₃ CN	l			
CO ₂				
CO				
H ₂ O				
C_6H_6				
(a)Deri	ved from column densities and Vo	oyager results		

Before Voyager : only column densities inferred for CH_4 , H_2 , C_2H_2 , C_2H_6 and C_2H_4 . coupling between T and composition -> importance of the thermal profile observed with Voyager .

After Voyager: very good constraints because the T profile was known from Voyager

Titan's composition: before and after space probes

	"Before" Voyager ^(a)	Voyager	Ground/satellites	Cassini
CH_4	1.3-2.6 %	6% (alt. var.)	4	.9% surf, 1.48% atm.
H_2	< 2.6 %	0.2 %		0.1 %
C_2H_2	1 x 10 ⁻⁵	2.2 x 10 ⁻⁶	5.5 x 10 ⁻⁶ (ISO)	2.0 x 10 ⁻⁶
C_2H_6	2 x 10 ⁻⁶	1.3 x 10 ⁻⁵	2.0 x 10 ⁻⁵ (ISO)	1.0 x 10 ⁻⁵
C_2H_4	3 x 10 ⁻¹⁰	9 ± 5 x 10⁻ ⁸	1.2 x 10 ⁻⁷ (ISO)	1.0 x 10 ⁻⁷ (alt. var.)
C_3H_8	-	7± 4 x 10 ⁻⁷	2 x 10 ⁻⁷ (ISO)	1.0 x 10 ⁻⁷
CH_3C_2	Н -	4 ± 2 x 10 ⁻⁹	1.2 x 10 ⁻⁸ (ISO)	8 x 10 ⁻⁹
HCN	-	1.6 x 10 ⁻⁷	5 x 10 ⁻⁷ (alt. var.)	1 x 10 ⁻⁷
HC_3N	-	< 1.5 x 10 ⁻⁹	10 ⁻¹² -10 ⁻⁸ (alt.var.)	1 x 10 ⁻⁹
CH ₃ CI	N -	-	1 x 10 ⁻⁸ (alt. var.)	-
CO_2	-	1.4 x 10 ⁻⁸	2.0 x 10 ⁻⁸ (ISO)	1.6 x 10 ⁻⁸
CO	-	-	6 x 10 ⁻⁵ (near IR)	4.7 x 10 ⁻⁵
H ₂ O	-	-	8 ± 5 x 10 ⁻⁹ (ISO)	4 x 10 ⁻¹⁰
C_6H_6	-		4 x 10 ⁻¹⁰ (ISO)	4 x 10 ⁻¹⁰

(a)Derived from column densities and Voyager results

Before Voyager : only column densities inferred for CH_4 , H_2 , C_2H_2 , C_2H_6 and C_2H_4 . coupling between T and composition -> importance of the thermal profile observed with Voyager.

After Voyager: very good constraints because the T profile was known from Voyager

Saturn

Saturn's composition: before space probes flybys

- 1932: identification of CH₄ and NH₃

- 1962: first observation of H_2 from S(1) and S(0) lines in the (4-0) band (Spinrad et al., 1962)

From the line width:

a_{H2}= 76±20 km.Am (encrenaz 1973)

H₂ detection by Encrenaz et al., 1973

Saturn's thermal profile before space probes flybys

But the equilibrium temperature of Saturn should be 75 K (including ring shadowing) \Rightarrow Internal source of heating

Saturn's temperature: comparison with probes results

Pioneer flyby (Sept. 1979)

Saturn's temperature: comparison with probes results

Pioneer flyby (Sept. 1979)

Good constraints on the deep thermal profile from H₂-H₂ and H₂-He collision-induced absorption spectrum

-> independent from the "insitu" spacecraft measurements

Saturn's composition: constraints before the probes

Case of CH₄ and H₂ from the $3v_3$ CH₄ band (0.83 - 1.67 μ m) -> many CH₄ lines over a continuum due to H₂ pressure-induced absorption

Buriez and deBergh (1981) => $CH_4/H_2 = (4 \pm 2).10^{-3}$

From Voyager: (2 - 4).10⁻³ From Cassini: (4.7 ± 0.2).10⁻³

H₂ and CH₄: Good constraints from ground-based observations

Saturn's composition: constraints before the probes

From Voyager : $(0.5 - 2) \times 10^{-4}$, Courtin et al. (1984) From Cassini : 1 - 3 bar : $q_{NH3} = (1.4 - 5).10^{-4}$ with latitudinal variations, Fletcher et al. (2011)

Saturn's composition: constraints before the probes

Case of NH₃

Many other constrains from the ground and with ISO and Herschel satellites

Reference	q _{NH3}	Method
Courtin et al. (1984)	$(0.5 - 2.0) \times 10^{-4}$	Voyager/IRIS 180–300 cm ⁻¹
de Pater and Massie (1985)	5×10^{-4} at <i>p</i> > 3 bar	Very Large Array (VLA)
	3×10^{-5} at <i>p</i> < 1.25 bar	
Briggs and Sackett (1989)	$0.7 - 1.1 \times 10^{-4}$ at <i>p</i> = 2 bar	Radio T _B
Grossman et al. (1989)	1.2×10^{-4} around condensation level	VLA
Noll and Larson (1990)	Upper limit 3×10^{-4}	5 µm spectra
de Graauw et al. (1997)	1.1×10^{-4} at <i>p</i> = 1.2 bar	ISO/SWS
Kerola et al. (1997)	Less than 1×10^{-9} at radiative-convective boundary	3 μm data
Orton et al. (2000)	1×10^{-4} with 3–4× uncertainty	Sub-mm PH ₃ analysis
Burgdorf et al. (2004)	1×10^{-4}	ISO/LWS 96-101 cm ⁻¹
Kim et al. (2006)	6×10^{-8} at 460 mbar	3 μm data
	3×10^{-8} at 390 mbar	-
Fletcher et al. (2009a)	$(3.3 \pm 0.3) \times 10^{-7}$ at 690 mbar	Cassini/CIRS far-IR

Vertical profile from the Herschel satellite : Fletcher et al., 2012

NH₃: good constraints from the ground-based and Earth satellites, independently of Saturn's probes.

Saturn's composition: hydrocarbons

C₂**H**₆

- From ground or Earth satellites :

q_{C2H6} = 1.8 x 10⁻⁶, 12.2 μm Tokunaga et al. (1975)
 (6±1) x 10⁻⁶ < 20 mbar, IUE (UV satellite), Winkelstein et al. (1983)
 (1.3 ±0.3) x 10⁻⁵ at 0.5 mbar, ISO/SWS (infrared satellite), Moses et al. (2000)
 (1.5 ±0.5) x 10⁻⁵ at 0.5 mbar, IRTF, Greathouse et al. (2005)

- From spacecrafts:

Voyager: $(3\pm1) \ge 10^{-6} < 20$ mbar, Voyager/IRIS, Courtin et al. (1984) Cassini: $(1.4\pm0.2) \ge 10^{-5}$ at 1 mbar

C₂H₆: agreement between ground-based and spacecraft measurements

Saturn's composition: hydrocarbons

C₂**H**₆

- From ground or Earth satellites :

 $q_{C2H6} = 1.8 \times 10^{-6}$, 12.2 µm Tokunaga et al. (1975) (6±1) x 10⁻⁶ < 20 mbar, IUE (UV satellite), Winkelstein et al. (1983) (1.3 ±0.3) x 10⁻⁵ at 0.5 mbar, ISO/SWS (infrared satellite), Moses et al. (2000) (1.5 ±0.5) x 10⁻⁵ at 0.5 mbar, IRTF, Greathouse et al. (2005)

- From spacecrafts:

Voyager: $(3\pm1) \ge 10^{-6} < 20$ mbar, Voyager/IRIS, Courtin et al. (1984) Cassini: $(1.4\pm0.2) \ge 10^{-5}$ at 1 mbar

C₂H₆: agreement between ground-based and spacecraft measurements

Other hydrocarbons:

- **C₂H₂:** many measurements with IUE, TEXES/IRTF, SWS/ISO, Celeste/IRTF
- $C_{3}H_{8}$: (2.6 ±0.8) x 10⁻⁶ with TEXES/IRTF while (0.9 1.5) x 10⁻⁷ from Cassini/CIRS
- **CH₃C₂H**: 1 measurement with SWS/ISO , in agreement with Cassini/CIRS
- **C₄H₂:** 1 measurement with SWS/ISO , in agreement with Cassini/CIRS
 - **C**₆**H**₆: only detection with SWS/ISO, no detection from probes

Saturn's composition

Oxygen compounds

- CO: detection in submm but not with the probes
- CO₂: 1 measurement from ISO/SWS (3.0 x 10⁻¹⁰ at 0.3-10 mbar), agrees with Cassini/CIRS

<mark>// H</mark>2O :

- 1.5×10^{-7} at 2 mbar from IUE (UV)
- 6.0×10^{-9} at 2 mbar from SWS/ISO (2.4 45 μ m)

H₂O was not detected by Saturn's probes (because of bad S/N ratio)

Saturn's composition

Oxygen compounds

- CO: detection in submm but not with the probes
- CO₂: 1 measurement from ISO/SWS (3.0 x 10⁻¹⁰ at 0.3-10 mbar), agrees with Cassini/CIRS

<mark>ළ</mark> - H₂O :

 1.5×10^{-7} at 2 mbar from IUE (UV)

 6.0×10^{-9} at 2 mbar from SWS/ISO (2.4 – 45 μ m)

H₂O was not detected by Saturn's probes (because of bad S/N ratio)

Jupiter

1932: detection of CH_4 and NH_3 (Wildt, 1932) 1960: detection of H_2 (Kiess et al.)

Helium was presumed because of the theory of the primitive solar nebula composition

1932: detection of CH_4 and NH_3 (Wildt, 1932) 1960: detection of H_2 (Kiess et al.)

Helium was presumed because of the theory of the primitive solar nebula composition

Thermal profile

constrained from H_2 - H_2 and H_2 -He collision induced absorptions (Houck et al., 1975)

1975 : Jupiter's infrared spectrum

1975 : Jupiter's infrared spectrum

Detection of CH₄, NH₃, H₂ from the IR spectrum.

1975 : Jupiter's infrared spectrum

Detection of CH₄, NH₃, H₂ from the IR spectrum.

Jupiter composition before probes flybys

High spectral resolution observations in IR Tokunaga et al., 1979 2.0-INTENSITY ERGS/CM²- SEC - CM⁻¹-STER 0 5 5 .5+ 145° K 15_{NH3} 140° K ທີ sP(4,K) 134°K 120° K 0.0 850 870 **880** 890 900 820 830 840 860 810 800 WAVENUMBER (CM⁻¹)

- line profile of NH₃ absorption lines => sensitivity to different levels , while continuum is sensitive to the NH₃ cloud deck
- C_2H_6 observed in emission => emission comes from a region where T / with height

Jupiter thermal profile: comparison with probes

Good agreement from ground-based observations and Pioneer spacecraft

Jupiter composition: comparison with probes

Abundances, some examples

		Before spacecrafts	From spacecrafts
		(Ridgway, 1976)	(Taylor, 2004)
")	H_{2}	0.89	0.86
"	He	0.05 - 0.15	0.136
"	CH_4	7 x 10 ⁻⁴	1.8 x 10 ⁻³
"	NH ₃	2 x 10 ⁻⁴	7.0 x 10 ⁻⁴
	H ₂ 0	1 x 10 ⁻⁶	>5.0 x 10 ⁻⁴
	Non eq	uilibrium gas	
"	CO	2 x 10 ⁻⁹	1.5 x 10⁻ ⁹
•	PH ₃	4 x 10 ⁻⁷	5 x 10 ⁻⁷
	Photoc	hemical products	
•••	C ₂ H ₆	4 x 10 ⁻⁴	3 x 10 ⁻⁶

2 x 10⁻⁸

Disagreement mostly come from the thermal profiles

8 x 10⁻⁵

 $\mathbf{C}_{2}\mathbf{H}_{2}$

Conclusions regarding the solar system observations

Giant planets

Main composition = H_2 (~ 90%) and He (~ 10 %).

T in the troposphere can be constrained by the absorption-induced bands of H_2 = most reliable probe for temperature sounding for giant planets.

- \Rightarrow Good estimation of the molecular abundances in the troposphere
- \Rightarrow But for photochemical product emitting in the stratosphere, constrains are poorer
- -> need of high spectral resolution observations to probe higher.

Conclusions regarding the solar system observations

Giant planets

Main composition = H_2 (~ 80%) and He (~ 20 %).

T in the troposphere can be constrained by the absorption-induced bands of H_2 = most reliable probe for temperature sounding for giant planets.

- \Rightarrow Good estimation of the molecular abundances in the troposphere
- \Rightarrow But for photochemical product emitting in the stratosphere, constrains are poorer
- -> need of high spectral resolution observations to probe higher.

Telluric planets

Very difficult ... because the main composition is a priori unknown. Large spectral coverage => constrains on the T at several level: e.g. surface temperature in radio and stratospheric temperature in mid-IR.

The knowledge of the T profile from Voyager observations was crucial in the knowledge of Titan's composition.

Perspectives: 2 promising methods for hot Jupiters

Use of primary transit and secondary transit spectra simultaneously (Griffith et al., 2014)

- Primary transit -> terminator, absorption of the stellar light => sensitive to the planet composition and not so much to the T profile
- Secondary transit -> day side, stellar light diffusion + thermal emission => sensitive to the composition and the T profile

Fit of the secondary transit + primary transit of XO-2b (include H_2O , CH_4 , CO, CO_2)

Need of large spectral range and high resolution to decouple T and composition.

Perspectives: 2 promising methods for Hot Jupiters

Detection of a molecule from high resolution spectra (Snellen et al. 2010)

High spectral resolution observation of exoplanets with VLT/CRIRES (R = 100 000)

Principle: molecular lines are Doppler shifted while the planet is moving on its orbit, whereas the stellar spectrum is not.

Detection of CO in transit: HD209 and HD189 outside transit: τ -Boo and 51 Peg