Condensation Chemistry and Abundance Measurements in Cloudy Atmospheres

European Research Council Established by the European Commission

France Allard¹ Bernd Freytag³

Isabelle Baraffe^{2,1} Gilles Chabrier^{1,2}

¹CRAL/École Normale Supérieure de Lyon ²University of Exeter ³ Uppsala Universitet

Ultracool atmospheres (M dwarfs, brown dwarfs) are complex — planetary atmospheres are more complex Low Mass Star

- Irradiation & heat redistribution, rotation
 - Greater compositional diversity
- Transmission spectroscopy only sensitive to highest part of atmosphere
- Often few data points to constrain multiparameter models
 NASA

Atmosphere models from supergiants to brown dwarfs — and beyond

Derek Homeier – Abundances in cloudy atmospheres — Exo-Abundances — Grenoble, 13/05/14 2014

logg

(Sub-) stellar atmosphere modelling

- independent Variables
 (minimal):
- effective temperature T_{eff}
- surface gravity $g(r) = GM/r^2$
- mass *M* or radius *R* or luminosity $L = 4 \pi R^2 \sigma T_{eff}^4$
- composition ("metallicity")
- convection → (micro-) turbulence & mixing
- rotation
- chemical peculiarities

PHOENIX workflow (P. Hauschildt)

→ self-contained and internally consistent structure in 1D

Molecular Bands — Methane

Yurchenko et al. 2014

ExoMol

10¹⁰ lines

Fig. 2. Polyad energy-level structure for ¹²CH₄. Boudon et al. 2006

Molecular line blanketing: Methane

- 30 Mio. lines computed with the STDS program (Université de Bourgogne) — 2013 update: 80 Mio.
- Vibrational and rotational states up to ~ 8000 cm⁻¹
- Completeness: ~50% (mid-IR) 10% (H-band) 0% (Y/J)

Molecular Line Profiles - Data

- Molecular line data for stellar atmosphere calculations:
 - Extensive data available from spectroscopy line lists (HITRAN and others)
 - Often damping widths and shifts included, sometimes temperature dependence
- Challenges:
 - Most data for Earth and outer planets' atmosphere studies
 Ine lists complete only at 296 K
 damping constants at low temperatures
 - Most experimental measurements for N₂ and O₂ as perturbers
 - Generalisation for large theoretical line lists required

Non-equilibrium Chemistry

- Nitrogen- and Carbon chemistry is inhibited by slow reaction steps breaking up the C=O and N=N bonds:
- $N_2 \leftrightarrow NH_3$: limited by $N_2 + H_2 \rightleftharpoons 2 NH$

 $K = 8.45 \times 10^{-8} \times e^{(-8151/T)}$ (Lewis & Prinn 1980)

• $CO \leftrightarrow CH_4$: limited by $H_2 + CH_3O \Rightarrow CH_3OH + H$

 $K = 1.77 \times 10^{-22} \times T^{-3.09} e^{(-3055/T)}$ (Visscher, Moses & Saslow 2010)

• $CO \leftrightarrow CO_2$: limited by $CO + H_2O \rightleftharpoons CO_2 + H_2$

 $K = 6.44 \times 10^3 \times T^{-3.09} e^{(33889/T)}$ (Graven & Long 1954)

Molecular Line Profiles - Data

- Molecular line data for stellar atmosphere calculations:
 - Extensive data available from spectroscopy line lists (HITRAN and others)
 - Often damping widths and shifts included, sometimes temperature dependence

Molecular Line Profiles - Observation

• CO spectrum, testing line positions, strengths, shapes and non-equilibrium chemistry effects

convective structure defines deep thermal profile → boundary condition for evolution!

Derek Homeier Abundances in cloudy atmospheres — Exo-Abundances — Grenoble, 13/05/14 2014

Baraffe et al. in prep.

Mixing and Diffusion - a closer Look

convective overshoot and gravity wave excitation dominant in brown dwarfs

Derek Homeier Abundances in cloudy atmospheres — Exo-Abundances — Grenoble, 13/05/14 2014

Mixing and Diffusion - a closer Look

Exoplanets — Irradiation and Circulation

 Global Circulation models can reproduce temperature redistribution and (observable!) wind patterns

Strongly non-kartesian (pancake-shaped) grid

T dwarfs — more clouds

Separate cloud setup for low-temperature condensates

Clouds from L to Y dwarfs in a single model

Y dwarfs — yet more clouds

Y dwarfs — yet more clouds

Water ice clouds appearing between 300 and 400 K

Clouds from L to Y dwarfs

• Water ice clouds appearing between 300 and 400 K Derek Homeier Abundances in cloudy atmospheres — Exo-Abundances — Grenoble, 13/05/14 2014

Clouds in Brown Dwarfs and Planets

Atmospheric composition

- Metal abundances in general, and carbon and oxygen in particular, can differ from host star
- various degrees of oxygen and carbon depletion can occur depending on location and accretion history in the protoplanetary disk
- "non-solar" C/O, additional impact of cloud condensation
- Ch. Mordasini's talk;
 cf. also Ch. Helling with I. Kamp et al. 2014
 (Life, in press)

→ try <u>arXiv:1403.4420</u>

Clouds affect carbon/oxygen chemistry

sequestration of oxygen in deep silicate clouds!

Clouds in hot Neptunes and super-Earths

Clouds in hot Neptunes and super-Earths

GJ 436b transit models and WFC3 observations (Knutson et al. 2014)

Conclusions

Low Mass Star

NASA

- Cloud modelling successful in brown dwarfs
 Impact also on measured gas phase composition and thermal structure (evolution boundary!)
- Peculiarities of planetary atmospheres (mixing, nucleation processes) yet to be understood
- For mature, irradiated planets connection to circulation models essential