From stellar nebula to planetesimals \& From planetesimals to planets

What is the chemical composition of planets ?

U. Marboeuf, A. Thiabaud, Y. Alibert, N. Cabral and W. Benz

Physikalisches Institut - Universität Bern
Center for Space and Habitability

Chemical composition of planetesimals

Rocks + Ices

Chemical differentiation of the protoplanetary disk Composition of planetesimals

Chemical composition of planets

Rocks + Ices

Formation, growth, and migration of planets

ISM and solar nebula compositions

Abundances of species

From disc to grains

Solar luminosity

Initial chemical composition

Clathrates and condensates

8 different chemical compositions

From disc to grains

From disc to grains

Cage of water molecules can trap up to 17% of volatile molecules

Conditions of formation:

- Total gas pressure > Equilibrium pressure of clathrates
- Temperature <-> Kinetic

From disc to grains

Temperature profile in the disc

$$
\Sigma(r)=\Sigma_{0} \cdot\left(\frac{r}{a_{0}}\right)^{-\gamma} \cdot e^{\frac{r}{a_{a m p}} 2-\gamma} \quad\left(\mathrm{g} \mathrm{~cm}^{-2}\right)
$$

From disc to grains

From disc to grains

From disc to grains
Irradiated disks

From disc to grains

Average molar ratio

 of species in planetesimals

From planetesimals to planets

About 500 simulations with 10 planets with different initial positions

From planetesimals to planets

From planetesimals to planets

Growth of planets by accretion of gas and planetesimals

About 500 simulations with 10 planets with different initial positions

From planetesimals to planets

Solid/(solid+gas)

From planetesimals to planets
Ices/ (Ices+rocks)

From planetesimals to planets

H2O/all ices

From planetesimals to planets

C/O in Ices

'Non irradiated' model

From comets to planets

Conclusions

Calculations: Ice line positions
Abundances of species
Ice/rock mass ratio

Function of

- Surface density of discs
- Irradiation
- Distance to the star
- Structure of water ice
=> trapping of species
$\longrightarrow \quad$ In good agreement with comets

Abundances of species
Ice/rock mass ratio

- Distance to the star

Function of

- Position in the disc
- Mass of planets

In good agreement with Jupiter, icy moons and dwarf planets

Current and Futur works

Current and Futur works

Studies for exocomets and exoplanets

- Phydico-chemical evolution of planetesimals during their migration in the disk
- Different C/O ratio in volatile molecules
- Different Stellar luminosity and mass

What is the abundance of species in gas and ice phases in the discs?

What is the abundance of species for different abundances of C and O in discs?

