Abundances from direct mid-resolution spectroscopy of exoplanets

Mostly taken from Konopacky et al. 2013 and Line et al. 2014
The data

5.5hr NIR spectroscopy from OSIRIS (@Keck) R~4000
First step:
Cross correlation with theoretical line lists:
\(\text{H}_2\text{O}, \text{CO}, \text{but no CH}_4 \)
Taking on abundances

Second Step:
High pass filtering to highlight high resolution features such as lines
Taking on abundances

Third step:
Model fitting to find the « best » C/O
Line et al 2014 approach

« Data driven approach rationale »

\[X : \text{state vector (i.e. Teff, log g, abundance}_1, \ldots \text{ abundance}_n...) \]
\[Y : \text{Observation vector (i.e. fluxes at given wavelength)} \]
\[Y = F(X) \]

Usually \(F(X) \) is the model and we compare \(F(X) \) to \(Y \) to retrieve \(X \)

The idea is to invert the problem and directly find \(X \) analytically

« Bayesian approach »

They formulate the problem as:

Finding \(P(X|Y) \)

Bayes theorem: \[P(X|Y) = P(Y|X) \cdot P(X) \]

Where \(P(X) \) is called the prior probability of having given state vector
Minimising the cost function

After some algebra it comes that the most likely X is the one which minimises this:

$$\chi^2(x) = (y - F(x))^T S_e^{-1}(y - F(x)) + (x - x_a)^T S_a^{-1}(x - x_a)$$

X : state vector (i.e. $T(z1)...T(zn)$, log g, abundance1, ... abundance n...)
X_a : prior state vector
S_a : Prior allowed variability or confidence (covariance matrix)
Y : Observation vector (i.e. fluxes at given wavelength)
S_e : gaussian observational error (diagonal if uncorrelated)
$F(X) : « forward model »$
Advantages

- *Minimisation issues are well known*

- *Errors on retrieved X are consistently « given » by the covariance matrix*

- *In theory this is a very optimised approach which provides nice quantitative results in a consistent way.*
Weakness

- **Huge dependance on the forward model**:
- Directly in the minimisation « F(X) »
- By its jacobian in the error determination

But what is this forward model ???
- It needs to take the form of a matrix operator
- One dimension is the number of wavelength bin
- The other the number of input parameters (=length of the state vector)
The model atmosphere is parameterized with **five retrievable gases**: H2O, CH4, CO, CO2, and NH3. H2/He continuum absorption is also included where the H2/He mole fraction (with He/H2=0.193) is computed by subtracting the latter molecules from unity. **All mixing ratios are assumed to be uniform with altitude**.

The Freedman et al. (2008) cross section database was used with the updates to the ammonia and H2 collision-induced opacities described in Saumon et al. (2012). **Alkali metals, metal oxides or hydrides are not included** in this investigation.

The temperature profile is not parameterized, rather the temperature at each model slab is retrieved. However, some smoothing is implemented through the a-priori covariance matrix to prevent overfitting and unphysical oscillations in the profiles.

Is it really a crude model?

Is it because any new parameter increases the dimension of the problem?

Could we forward-model using BT-SETTL?